Write your name here Surname	Other nam	es
Pearson Edexcel Level 3 GCE	Centre Number	Candidate Number
Further M Advanced Subsidiary Further Mathematics of Further Mechanics 1		tics
Sample Assessment Material for first t Time: 50 minutes	eaching September 2017	Paper Reference 8FM0/2E
You must have: Mathematical Formulae and Sta	atistical Tables, calculator	Total Marks

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for algebraic manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 4 questions in this question paper. The total mark for this paper is 40.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each guestion.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

S58531A
©2017 Pearson Education Ltd.
1/1/1/

Answer ALL questions. Write your answers in the spaces provided

Unless otherwise indicated, whenever a numerical value of g is required, take $g = 9.8 \,\mathrm{m \, s^{-2}}$ and give your answer to either 2 significant figures or 3 significant figures.

$g = 9.8 \mathrm{m s^{-2}}$ and give your answer to either 2 significant figures or 3 significant figures.	
1. A small ball of mass 0.1 kg is dropped from a point which is 2.4 m above a horizontal floor. The ball falls freely under gravity, strikes the floor and bounces to a height of 0.6 m above the floor. The ball is modelled as a particle.	
(a) Show that the coefficient of restitution between the ball and the floor is 0.5	(6)
(b) Find the height reached by the ball above the floor after it bounces on the floor for the second time.	
the second time.	(3)
(c) By considering your answer to (b), describe the subsequent motion of the ball.	(1)

	Question 1 continued
	Question I commuted
122	
6	
<u> </u>	
2/2	
2	
868	

(Total for Question 1 is 10 marks)
Mathematics – Sample Assessment Materials – 225

2.	A small stone of mass $0.5 \mathrm{kg}$ is thrown vertically upwards from a point A with an initial sp of $25 \mathrm{ms^{-1}}$. The stone first comes to instantaneous rest at the point B which is $20 \mathrm{m}$ vertical above the point A . As the stone moves it is subject to air resistance. The stone is modelled as a particle.	lly
	(a) Find the energy lost due to air resistance by the stone, as it moves from A to B	(3)
	The air resistance is modelled as a constant force of magnitude R newtons.	
	(b) Find the value of <i>R</i> .	
		(2)
	(c) State how the model for air resistance could be refined to make it more realistic.	(1)

\otimes	l
*****	ı
*****	ı
*****	1
	1
******	ı
*****	ı
	ı
	ı
XX	ı
XX 3 5 XX	ı
	ı
******	ı
XX XX XX	ı
XX ::	ı
	ı
	ı
XXXXX	ı
XXXX	ı
\times	ı
XXX	ı
	ı
XX	ı
	ı
$\times\!\!\!\times\!\!\!\times$	ı
	ı
	ı
$\times\!\!\times\!\!\times\!\!\times$	ı
	ı
*****	١
	١
	1
******	١
	1
	ı
*****	ı
	ı
	ı
	ı
*****	ı
	ı
**************************************	ı
	ı
XXXXX	ı
\times	ı
	ı
	ı
XX XX XX	ı
	ı
XXXXXX	ı
XXXXX	ı
	ı
XXIIdMXX	
	ı
T.W.R.	
OT WR	
OT WR	
NOT WR	
O NOT WRI	
DO NOT WRI	
DO NOT WR	
DO NOT WRI	
A DO NOT WRI	
EA DO NOT WRI	
REA DO NOT WRI	
AREA DO NOT WRI	
S AREA DO NOT WRI	
HS AREA DO NOT WRI	
HIS AREA DO NOT WRI	
THIS AREA DO NOT WRI	
N THIS AREA DO NOT WRI	
IN THIS AREA DO NOT WRI	
E IN THIS AREA DO NOT WRI	
TE IN THIS AREA DO NOT WRI	
RITE IN THIS AREA DO NOT WRI	
WRITE IN THIS AREA DO NOT WRI	
WRITE IN THIS AREA DO NOT WRI	
OF WRITE IN THIS AREA DO NOT WRI	
OT WRITE IN THIS AREA DO NOT WRI	
NOT WRITE IN THIS AREA DO NOT WRI	
O NOT WRITE IN THIS AREA DO NOT WRI	
DO NOT WRITE IN THIS AREA DO NOT WRI	
DO NOT WRITE IN THIS AREA DO NOT WRI	
DO NOT WRITE IN THIS AREA DO NOT WRI	

Question 2 continued	
(Total for Operation 2 is 6	morks)
(Total for Question 2 is 6	mai K5)

3. [In this question use $g = 10 \text{ m s}^{-2}$]

A jogger of mass $60 \, \text{kg}$ runs along a straight horizontal road at a constant speed of $4 \, \text{m s}^{-1}$. The total resistance to the motion of the jogger is modelled as a constant force of magnitude $30 \, \text{N}$.

(a) Find the rate at which the jogger is working.

(3)

The jogger now comes to a hill which is inclined to the horizontal at an angle α , where $\sin \alpha = \frac{1}{15}$. Because of the hill, the jogger reduces her speed to $3\,\mathrm{m\,s^{-1}}$ and maintains this constant speed as she runs up the hill. The total resistance to the motion of the jogger from non-gravitational forces continues to be modelled as a constant force of magnitude 30 N.

(b) Find the rate at which she has to work in order to run up the hill at $3\,\mathrm{m\,s^{-1}}$.

(5)

Š (
	Question 3 continued
-	
-	
_	
-	
_	
-	
_	
-	
_	
_	
_	
_	
_	
_	
-	
_	
-	
-	
_	
-	
_	
-	
_	
_	
-	(Total for Question 3 is 8 marks)

- **4.** A particle *P* of mass 3m is moving in a straight line on a smooth horizontal table. A particle *Q* of mass *m* is moving in the opposite direction to *P* along the same straight line. The particles collide directly. Immediately before the collision the speed of *P* is *u* and the speed of *Q* is 2u. The velocities of *P* and *Q* immediately after the collision, measured in the direction of motion of *P* before the collision, are *v* and *w* respectively. The coefficient of restitution between *P* and *Q* is *e*.
 - (a) Find an expression for v in terms of u and e.

(6)

Given that the direction of motion of P is changed by the collision,

(b) find the range of possible values of e.

(2)

(c) Show that $w = \frac{u}{4}(1 + 9e)$.

(2)

Following the collision with P, the particle Q then collides with and rebounds from a fixed vertical wall which is perpendicular to the direction of motion of Q. The coefficient of restitution between Q and the wall is f.

Given that $e = \frac{5}{9}$, and that P and Q collide again in the subsequent motion,

(d) find the range of possible values of f.

(6)

Question 4 continued

114	
XXXXXX	
<u> </u>	
×	
$\times H \times$	
\times	
XIII X	
\times	
×ec×	
3	
$\times \times \times$	
$\times \bigcirc \times$	
$\times \triangle \times$	

200	
10	
(XXIIXXX)	
XXXXXX	
WRITEIN	
NI BAL	
WRITEIN	
WRITEIN	
WRITEIN	
O NOT WRITE IN	
NOT WRITE IN	
O NOT WRITE IN	
O NOT WRITE IN	
DO NOT WRITE IN	
O NOT WRITE IN	
DO NOT WRITE IN	
DO NOT WRITE IN	
DO NOT WRITE IN	
DO NOT WRITE IN	
DO NOT WRITE IN	
DO NOT WRITE IN	
DO NOT WRITE IN	
DO NOT WRITE IN	
DO NOT WRITE IN	
EA DO NOT WRITE IN	
REA DO NOT WRITE IN	
AREA DO NOT WRITE IN	
S AREA DO NOT WRITE IN	
HS AREA DO NOT WRITE IN	
THIS AREA DO NOT WRITE IN	
I THIS AREA DO NOT WRITE IN	
THIS AREA DO NOT WRITE IN	
EIN THIS AREA DO NOT WRITE IN	
FEIN THIS AREA DO NOT WRITE IN	
RITE IN THIS AREA DO NOT WRITE IN	
WRITE IN THIS AREA DO NOT WRITE IN	
WRITE IN THIS AREA DO NOT WRITE IN	
T WRITE IN THIS AREA DO NOT WRITE IN	
IOT WRITE IN THIS AREA DO NOT WRITE IN	
OT WRITE IN THIS AREA DO NOT WRITE IN	
NOT WRITE IN THIS AREA DO NOT WRITE IN	

estion 4 continued	
	(Total for Question 4 is 16 marks)